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Objectives

This narrative review aims to provide a comprehensive and clinically relevant synthesis
of logistic regression applications in clinical medicine, particularly in risk prediction and
diagnostic modeling. Key objectives include evaluating best practices, addressing
common pitfalls, and outlining validation techniques when using logistic regression to
analyze binary outcomes such as disease presence versus absence.

Methods

The review synthesizes data from 41 peer-reviewed articles spanning from 1987 to 2025,
selected from databases including PubMed, MEDLINE, and Scopus using keywords
including “logistic regression,” “clinical medicine,” “diagnostic studies,” “prognostic
models,” “odds ratio,” and “model validation.” The narrative approach was chosen to
integrate findings from various study designs, allowing for a broad discussion on the
advantages and limitations of logistic regression in clinical research. The manuscript
details key methodological considerations such as the appropriate coding of continuous
and categorical variables, verification of core assumptions (e.g., linearity in the log-odds,
independence of observations, absence of perfect separation), and adherence to sample
size requirements. In addition, the review highlights the importance of splitting datasets
into training, validation, and testing subsets, and incorporates performance metrics
including sensitivity, specificity, precision, and F1 scores.

9 &

Results

The review reveals that logistic regression remains a cornerstone technique in clinical
risk prediction due to its interpretability and robust framework for handling binary
outcomes. Findings indicate that logistic regression models, when appropriately
validated, significantly enhance diagnostic accuracy and provide reliable risk estimates
through odds ratios and confidence intervals. The review identifies that data integrity,
proper variable categorization, and rigorous assumption checks are critical for avoiding
model misclassification. Furthermore, visual tools like violin plots are highlighted for
their utility in comparing distributions of predicted probabilities across different
outcome groups. Real-world examples demonstrate that factors such as biomarker levels
(e.g., troponin in acute coronary syndrome) and patient characteristics (e.g., albumin
levels, BMI in postoperative infections) are effectively modeled using logistic regression,
leading to clinically meaningful inferences.

Conclusion

Logistic regression is an indispensable tool in clinical research for predicting binary
outcomes and informing evidence-based practice. By integrating a detailed discussion of
best practices, common pitfalls, and model validation techniques, the manuscript offers a
definitive guide for clinicians and researchers. It emphasizes that rigorous adherence to
methodological standards—from data preparation to performance evaluation—can
significantly improve predictive accuracy and clinical decision-making. This study hopes
to serve as a valuable reference to clinicians, and explain statistical and machine learning
topics in a clinical context that is easily understood and widely accessible.
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INTRODUCTION

Clinical medicine relies on data derived from a variety of
sources, including patient interviews, physical assess-
ments, laboratory tests, and imaging studies.! These data
are compiled in numerous formats and can be broadly cat-
egorized according to variable type—for instance, contin-
uous measures (e.g., serum cholesterol levels), categorical
classifications (e.g., presence or absence of a disease), nom-
inal groupings (e.g., blood type), or ordinal scales (e.g., dis-
ease severity scores).2 The choice of an appropriate analyti-
cal method depends heavily on these variable types: certain
statistical techniques are more suitable for continuous vari-
ables, while others are better suited to categorical or or-
dinal data.3 When data collection or storage is inconsis-
tent—for example, misclassifying a continuous variable as
categorical—analyses can become flawed, resulting in bi-
ased or incorrect conclusions, and undermining the relia-
bility of research findings.4

Clinical research studies typically employ designs such
as prospective and retrospective cohorts, as well as case-
control studies. Each of these designs calls for a tailored
approach to analysis.> Prospective cohort studies collect
data going forward in time to observe outcomes, often en-
abling stronger inference regarding temporal relationships.
Retrospective cohorts draw on existing records to examine
outcomes that have already occurred, requiring careful at-
tention to data completeness and potential biases in
record-keeping. Case-control studies, by contrast, start
with the identification of cases (individuals with a partic-
ular outcome) and controls (those without the outcome),
and then look back in time to identify explanatory vari-
ables.’ Because each study design has its own strengths,
limitations, and typical analytical strategies, recognizing
how data were gathered is essential for selecting valid and
meaningful statistical methods.

In many clinical research scenarios, the choice of
method becomes more straightforward when all variables
share the same type (e.g., multiple continuous variables).
However, researchers commonly face situations where the
independent variable (x) is continuous—such as blood pres-
sure or a biomarker concentration—and the dependent
variable (y) is categorical—such as “disease present vs. dis-
ease absent.” Logistic regression is frequently used to ad-
dress this type of question; it provides a way to estimate
the probability of a particular outcome (e.g., the presence
of disease) in relation to one or more predictors, making it
especially valuable in diagnostic, prognostic, or risk-factor
analyses.®

A concrete example of logistic regression’s utility can
be seen in studies that predict whether patients with chest
pain are likely to have an acute coronary syndrome.” Using
factors like troponin levels, blood pressure, and electro-
cardiogram findings—each of which may be measured on
different scales—a logistic regression model can estimate
the probability that a patient truly has a significant cardiac
event.8 This kind of approach helps clinicians triage pa-
tients quickly and allocate resources more efficiently. With-
out a sound logistic regression framework, such data might

be analyzed incorrectly (for instance, by treating these vari-
ables as if they were all continuous and had a linear rela-
tionship to the probability of disease), leading to subopti-
mal or misguided clinical decisions.?

Beyond these foundational considerations, it is impor-
tant to recognize that logistic regression comes with several
key assumptions that must be met for valid inference. Chief
among these is the assumption that the log-odds of the
outcome are linearly related to the predictor variables.10
Violations of this assumption can lead to model misspec-
ification and misinterpretation of results. Logistic regres-
sion also outputs odds ratios, which reflect the change in
the odds of an outcome for a one-unit change in a predictor
variable.!1.12 While odds ratios are incredibly useful in clin-
ical settings, equating them directly to risk ratios or inter-
preting them without regard to baseline probabilities can
lead to misleading conclusions about a disease’s absolute
risk.11,12

A further consideration is that misuse of logistic regres-
sion—such as neglecting confounding variables, failing to
check for multicollinearity, or inadequately handling miss-
ing data—can undermine the validity of research findings
and contribute to flawed clinical decision-making.!3 Con-
versely, when properly applied and validated, logistic re-
gression plays a critical role in informing treatment strate-
gies, screening protocols, and the allocation of healthcare
resources. Its relatively straightforward interpretability, as
well as the ability to incorporate p-values and confidence
intervals, sets logistic regression apart from more complex
machine learning approaches, making it a staple in evi-
dence-based medicine despite the emergence of alternative
modeling techniques.14

This narrative review focuses on the proper uses, ap-
plications, and validation of logistic regression in clinical
medicine. We will explain how and when logistic regression
is most appropriate, outline the key variable types involved,
address common misconceptions about the method, and
differentiate the nuances of univariate versus multivariate
modeling. Finally, we will discuss strategies for developing,
validating, and testing logistic regression models to ensure
they are both robust and generalizable across a range of
clinical settings.

METHODS

This study is a narrative review of 41 papers published be-
tween 1987 and 2025 focusing on the use of logistic regres-
sion in clinical research. We chose a narrative review ap-
proach to synthesize findings from a broad array of study
designs and clinical contexts, rather than following the
stricter protocols of a systematic review. We conducted an
initial literature search using the databases PubMed, MED-
LINE, and Scopus, combining the keywords “logistic regres-
sion,” “clinical medicine,” “medical research,” “diagnostic
studies,” “prognostic models,” “retrospective,” “prospec-
tive,” and “odds ratio.” We included both primary research
articles and review papers that discussed the applications,
assumptions, and validation techniques associated with lo-
gistic regression in a clinical setting.
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During the selection process, we screened titles and ab-
stracts to identify studies that directly employed logistic re-
gression for analyzing categorical outcomes (e.g., presence/
absence of a disease) and addressed core assumptions (e.g.,
linearity in the log-odds). We also sought examples illus-
trating both best practices and common pitfalls—such as
failing to account for confounding variables, misinterpret-
ing odds ratios, or not verifying model fit. Articles focus-
ing solely on non-clinical contexts (e.g., business applica-
tions) or on other statistical methods without substantial
mention of logistic regression were excluded. Each author
then independently reviewed the full text of the included
articles, extracting information on study design, model-
building strategies, validation processes, and interpretative
guidelines. Findings were subsequently cross verified in
collaborative discussions, ensuring consistency and com-
pleteness in our synthesis.

Because this is a narrative review, we did not perform
a formal meta-analysis or statistical pooling of results. In-
stead, we integrated and summarized key themes that
emerged across studies, noting both methodological rigor
and frequent analytical challenges. The main areas of focus
included: (1) the role of logistic regression in different
study designs (prospective and retrospective cohorts, case-
control studies), (2) best practices for data preparation and
variable selection, (3) interpretation of logistic regression
outputs (particularly odds ratios), (4) strategies for check-
ing model assumptions (such as linearity in the log-odds
and absence of perfect separation), and (5) methods of
model validation (e.g., calibration, discrimination, cross-
validation). We also compiled examples illustrating how
authors dealt with real-world issues like missing data,
collinearity, or small sample sizes. Through this process, we
aimed to create a cohesive, clinically oriented review that
is relevant to physicians, researchers, and other healthcare
professionals interested in the robust application of logistic
regression.

DISCUSSION

CONCEPTS OF LOGISTIC REGRESSION AND WHEN TO
USE

Logistic regression aims to predict the probability of an
event occurring based on a linear combination of predictor
variables.? Because of this, it requires the dependent (y)
variable to be a binary outcome (i.e. 0 or 1, positive or neg-
ative for a disease). The independent (x) variable(s) may be
continuous (e.g. BMI, hematocrit) or categorical (e.g. gender,
ASA Class), however at least one of the independent vari-
ables must be continuous. If the goal of your analysis is to
predict the probability of an event occurring or not, using
continuous data as a predictor, logistic regression may be
an appropriate model.”

Linear regression is easily understood for having the
value you predict (y) be equal to a linear combination of
the predictor (x) variables.!5 This equation is shown below,
where ¥ represents the outcome, X; ; represent the pre-
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Figure 1. Example of a univariate logistic regression
model using high sensitivity troponin to predict the
likelihood of acute coronary syndrome. *Note that this
is fictional data and not intended to represent the true
relationship between ACS and troponins. Graph is
author’s own work.

dictors, 3 represents the Y-intercept, and ;_j represent
the coefficients.
YV =80+ BiXi+-+ BXy

Equation 1. Linear Regression.16

Since logistic regression aims to predict a probability, we
will replace ¥ with 5 for probability. We then need to ensure
that the value for p remains between 0 and 1. We achieve
this by applying the log-odds transformation to p, which re-
sults in the equation below.17 Again, 5 represents the prob-
ability, X;_j represent the predictors, 3, represents the Y-
intercept, and 3;_; represent the coefficients.

-~

ln(lfA) =Bo+B1 X1+ + BeXi
Rearranging, we can solve for p, which equals:
- 1
p= ———, wherez= Bo+ 1 X1+ -+ B Xy.
1+e*

Equation 2. Logistic Regression.!2

This transformation ensures that p remains between 0
and 1 and gives us a sigmoid-shaped (“S”- shaped) curve
representing the probability of an event occurring given a
particular level of the predictor value. An example using
high-sensitivity troponin to predict the likelihood of acute
coronary syndrome (ACS) via logistic regression is shown in

Figure 1.
INTERPRETATION OF LOGISTIC REGRESSION OUTPUT

When you successfully construct a logistic regression
model, a table of output will typically be provided along
with the equation and graph. This table of output contains
valuable information about the accuracy, strength of asso-
ciation, statistical, and clinical significance of the model
and as such, it is essential for the clinical researcher to un-
derstand the interpretation of these values!8 (Table 1).
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Table 1. Most common outputs from a logistic regression model and their interpretations.

Logistic
Regression Interpretation
Output
Intercept The baseline log-odds of the outcome when all predictors are zero. A negative intercept suggests a low baseline
(Bo) probability of the event; a positive one suggests a higher baseline probability.
Coefficient The log-odds change for a one-unit increase in the predictor variable X;_;. A positive coefficient indicates the
(Bk) event becomes more likely as X _ increases.
Odds Ratio Exponentiating a coefficient yields the odds ratio. For example, an odds ratio of 2 means the odds of the event
(eP) double for each one-unit increase in that predictor.
Standard Reflects uncertainty in the coefficient estimate. Larger SE implies less precise estimation of the effect of that
Error (SE) predictor.
Tests whether the coefficient is significantly different from zero. If p < 0.05, the predictor’s association with the
-value
P outcome is typically considered statistically significant.
Confidence
Interval The range in which the true odds ratio (or coefficient) is likely to fall. If the Cl does not include 1 (for odds ratios),
(e.g., 95% the effect is statistically significant at that level.
Cl)
Pseudo R? . e .
(e A rough measure of how well the model explains variation in the outcome. A value above 0.15 is generally
Négﬁelkerke considered ‘good’ in clinical medicine.1? Higher values indicate better explanatory power, although it does not
Rz)g behave exactly like R?in linear regression.
AIC (Akaike . . . . .
Information A measure of model quality that penalizes complexity. Lower AIC values typically indicate a better model fit when
Criterion) comparing multiple models on the same dataset.

For example, let’s interpret the output of the prior re-
gression using high-sensitivity troponin to predict ACS. Be-
low is the output:

Model Fit Metrics:
« Pseudo R*=0.28
« AIC=190.2
Te Coefficient Std. z- p- Odds 95%Cl
erm B Error value value Ratio (OR)
Intercept -3.50 0.60 -5.83 <0.001 - -
Troponin 1.20 0.25 4.80 <0.001 3.32 (523100)’

Which has the following interpretation:

A negative intercept (-3.50) implies that at near-
zero troponin, the baseline probability of ACS is low.
The coefficient of 1.20 (log-odds scale) translates to
an odds ratio of ~3.32, meaning each unit rise in
troponin multiplies the odds of having ACS by over
three.

The p-value < 0.001 in the troponin row and 95% CI
well above 1 confirm that high-sensitivity troponin is
a strong, statistically significant predictor of ACS.
The pseudo-R? of 0.28 suggests that troponin alone
explains why 28% of individuals in the dataset end up
with or without ACS. This is generally considered a
‘good’ value in clinical studies.!?

An AIC of 190.2, by itself, doesn’t say “good” or
“bad” in absolute terms; it mainly becomes meaning-
ful when compared with the AIC of another logistic
regression model predicting the same outcome.

ASSUMPTIONS AND PRECONDITIONS FOR USING
LOGISTIC REGRESSION

As with most statistical models, logistic regression relies on
a core set of assumptions and preconditions that the data
must adhere to before the model can be reliably applied.
Below, we examine each of the preconditions with an exam-
ple from the prior ACS model.

1. BINARY OUTCOME!8

Assumption: The outcome variable (ACS) must be coded as
0 = no ACS or 1 = ACS (or similarly binary).

 Why it matters: Logistic regression models the prob-
ability of a binary event.
» How to check:

o Confirm your data file has a clear 0/1 (or “no/
yes”) coding for ACS.

o If there are multiple categories (e.g., ACS sub-
types), you may need different coding or a dif-
ferent analysis (multinomial logistic regres-
sion).

Example:

« Ensure the dataset has acs = 0 for non-ACS patients
and acs = 1 for ACS patients.

2. INDEPENDENCE OF OBSERVATIONS!0

Assumption: Each data point (e.g., each patient) should be
independent of the others.

Academic Medicine & Surgery 4
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* Why it matters: Standard logistic regression meth-
ods assume that no repeated measures or clusters of
correlated data are present.

» How to check:

o Confirm that each row in your dataset is from a
distinct patient.

o If repeated measurements or clusters exist (e.g.,
multiple admissions of the same patient), con-
sider mixed-effects or other specialized models.

Example:

» Verify that each troponin measurement in your
dataset comes from a different patient, so there is
no repeated-measures structure (e.g., patient return-
ing multiple times).

3. NO PERFECT SEPARATION?0

Assumption: There should be no single predictor (or
combination of predictors) that perfectly separates the 0
and 1 outcome groups.

* Why it matters: If troponin alone always 100% pre-
dicts ACS vs. no ACS, the model parameters can be-
come infinite (the log-odds blow up).

« How to check:

o Plot troponin vs. ACS status (0 or 1).

o Look for a clean cutoff where all ACS=1 patients
have troponin above X and all ACS=0 patients
have troponin below X with no overlap. If that
exists, you likely have perfect separation.

Example:

+ If in your dataset, everyone with troponin >10 is
ACS=1 and everyone with troponin <10 is ACS=0,
you have perfect separation. Typically, that’s rare,
but it can happen in small samples.

4. LOG-0DDS LINEARITY!0

Assumption: Each predictor (e.g., troponin) is assumed to
have a linear relationship with the log-odds of the out-
come.

» Why it matters: Logistic regression is essentially lin-
ear in the log-odds space. If the relationship is non-
linear, the model may misfit.

» How to check:

1. Transform troponin into categories (e.g., bins
of troponin) and check if the log-odds of ACS
change in roughly a straight-line fashion.

2. Use polynomial or spline terms in the model
to see if they significantly improve model fit.

3. Partial residual plots to visualize if the log-
odds appear linear.

Example:

1. Create bins for troponin (for example, 0-1, 1-3,
3-5, etc.).

2. Calculate ACS rates in each bin (i.e., the proportion
of patients who have ACS in that bin).

3. Convert each proportion (ACS rate) to log-odds:

~

log — odds = In( P —)
1-p

4. Plot the log-odds of ACS against the midpoint of
each troponin bin.

5. If these points roughly form a straight line, it sug-
gests the log-odds relationship is linear—meaning
the logistic regression model is a good fit for tro-
ponin.

5. NO STRONG MULTICOLLINEARITY (FOR MULTIPLE
PREDICTORS)10

Assumption: When using more than one predictor (e.g.,
troponin + blood pressure + age), those predictors shouldn’t
be highly correlated with each other.

+ Why it matters: Multicollinearity inflates standard
errors, making the model coefficients unstable.
« How to check:

o A simple linear regression can reveal whether
two or more predictors are very strongly corre-
lated (e.g., r > 0.8).

Example:

» If you’re modeling ACS with troponin, BNP, and cre-
atinine, you’d check the correlation between tro-
ponin and BNP to ensure troponin isn’t extremely
highly correlated with BNP (another cardiac bio-
marker). If they are, it may cause unstable estimates.

6. ADEQUATE SAMPLE SIZE21

Assumption: You need enough data (particularly enough
events = ACS=1 cases) to reliably estimate coefficients.

* Why it matters: Too few cases with ACS leads to an
overfitted model or inflated standard errors.
* How to check:

o Rule of thumb: >10 events per predictor. If
you have 1 predictor (troponin) and only 15
ACS patients out of 300, that’s generally ac-
ceptable. But adding more predictors would re-
quire more ACS events.

Example:

« If your dataset has 300 patients, 50 of whom have
ACS, that’s generally enough to handle upto 5 pre-
dictors in logistic regression. If you want to add 6+
predictors, you might be pushing the 10-events-per-
predictor rule. There is, however, evidence in certain
cases to allow for this.21

MULTIVARIATE LOGISTIC REGRESSION

Multivariate logistic regression is an extension of simple
(univariate) logistic regression that models the probability
of a binary outcome (such as disease vs. no disease) using
multiple predictor variables. Instead of analyzing the effect
of a single factor—like one biomarker—on the odds of hav-
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ing an outcome, multivariate logistic regression incorpo-
rates a set of predictors (e.g., age, blood pressure, bio-
marker levels, comorbidities) all at once.22 By doing so, it
can control for confounding variables and tease apart the
individual contribution of each predictor while holding oth-
ers constant.23 This is particularly valuable in clinical re-
search, where patients often present with a combination
of risk factors, and the relationship among those factors
can be complex. Multivariate logistic regression helps re-
searchers and clinicians identify which variables are the
strongest drivers of a given outcome, improve risk stratifi-
cation, and make better-informed decisions about patient
diagnosis and management.23

Multivariate logistic regression utilizes the same equa-
tions presented above (Equation 2), and requires coding
binary predictor variables (e.g., smoker or non-smoker) as
1 or 0 (e.g. smoker = 1, non-smoker = 0). Similarly, ordinal
predictor variables that are not continuous but have an or-
der to them, such as ASA class, must be coded as 1-6 to fit
into the model.24

Generally, for a research manuscript, univariate models
are constructed for each predictor variable and each po-
tential confounding variable prior to constructing the mul-
tivariate model.25 This allows the researcher to identify
which variables are associated with the outcome of interest
and include only those that are significantly associated
with the outcome in the multivariate model. This helps to
satisfy precondition #6, which states that you must have
~10x the number of positive events in your data as predictor
variables.21

For example, in a study of 1,472 patients undergoing
panniculectomy, investigators initially tested five predic-
tors in univariate logistic regression for their association
with postoperative wound infection: age, BMI, diabetes sta-
tus, smoking status, and preoperative albumin. They found
that lower albumin and higher BMI were significantly asso-
ciated with an increased risk of wound infection (p < 0.01),
while age, diabetes, and smoking did not reach significance.
As a result, only albumin and BMI were carried forward into
the multivariate logistic regression model, ensuring that
the final analysis focused on the variables truly predictive
of wound infection in this patient population.26

Let’s interpret some sample output for the prior study, as
shown below:

Multivariate Logistic Regression for Postoperative
Wound Infection (n = 1,472).26

Parameter Coefficient Std. p- Odds 95% Cl for
B Error value Ratio OR
Intercept -5.15 0.78 <0.001 - -
dAll)’”m'” (per-1g/ 161 032 <0.001 500 (2.70,9.20)
51'2;” (per +1ke/ 005 002 0.003 105 (1.02,1.08)
Interpretation

1. Albumin: A 1 g/dL decrease in preoperative albumin
is associated with a log-odds coefficient of 1.61, cor-
responding to an odds ratio of 5.00. In other words,

each 1 g/dL drop in albumin multiplies the odds of
wound infection by five (95% CI: 2.70-9.20). The p <
0.001 indicates high statistical significance.

2. BMI: Each additional 1 kg/m? in BMI increases the
log-odds of wound infection by 0.05, translating to an
odds ratio of 1.05 (95% CI: 1.02-1.08). Although this
effect is modest, it is still statistically significant (p =
0.003).

3. Intercept: Represents the baseline log-odds of wound
infection when albumin and BMI are at zero (not clin-
ically relevant as an absolute value, but important
mathematically for the model).

Multivariate logistic regression allows the researcher to
examine the effects of multiple different variables on a par-
ticular outcome and compare the relative association be-
tween them.27 This allows the researcher to make an infer-
ence on how much a change in one variable matters. In the
previous example, we can see that a decrease in 1g/dL of al-
bumin increases the odds of wound infection by 5x, while
an increase in one point of BMI only increases the odds of
wound infection by 1.05x.

One way to think about that difference in effect sizes is
to ask, “How many single-point increases in BMI would it
take to have the same impact on infection odds as dropping
albumin by 1g/dL?” Mathematically, because each 1-point
rise in BMI multiplies the odds by about 1.05, you need
around 33 incremental increases for the product to reach 5
(i.e., (1.05)33 = 5). Practically, that means a huge change in
BMI is needed to match the same fivefold jump in odds of
infection that comes from a single 1g/dL drop in albumin.

WHY 33 BMI POINTS?

« The odds ratio (OR) for a 1kg/m? increase in BMI is
1.05.

» To get the same total increase in odds (x5) as a one-
unit drop in albumin, you solve the equation:

In (5)

—2 ~ 33,
In(1.05)

» Interpreted literally, a 33-unit rise in BMI (e.g., from
a BMI of 25 to 58) yields about the same multiplica-
tive effect on the odds of infection as dropping 1g/dL
in albumin.

(1.05)" =5 >z =

REAL-WORLD CAVEATS

* A 33-point BMI change is huge in clinical terms, so
while the math is correct, it highlights that albumin
has a substantially larger effect per “standard unit
change” than BMI in this particular model.

e Always remember these are model-driven inferences;
in practice, BMI changes of that magnitude are rarely
instantaneous or linear, and albumin levels can shift
for many reasons.

Still, the calculation helps illustrate how much bigger an
effect (on the odds of infection) a 1g/dL drop in albumin
exerts relative to the effect of modest BMI increases.2®
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MULTIVARIATE EXAMPLES

We have included some examples of how multivariate logis-
tic regression is used in different ways in real-life scenarios,
to emphasize accurate interpretation of the model in vari-
ous scenarios.

Note: All examples, while based on real research, are hypo-
thetical scenarios used to illustrate concepts of logistic regres-
sion in this manuscript and may not represent the true rela-
tionship between any variables mentioned.

Example 1: Using a Frailty Score to Predict Reintubation
in Thoracic Surgery28

Unplanned reintubation is a major pulmonary complica-
tion in thoracic surgery. You are interested in predictors of
this outcome. Recently, the 5-item modified frailty index
(MFI-5) has begun to be used in preoperative planning
alongside the standard ASA classification at your hospital,
and you want to evaluate the effect of MFI-5 in predicting
reintubation in thoracic surgery. The MFI-5 separates
frailty into five classes: 1, 2, 3, 4, and 5, much like the ASA
classification.

A study was done evaluating MFI-5 in predicting reintu-
bation and utilized a multivariate logistic regression model
including MFI-5 and age, sex, smoking status, and preoper-
ative steroid use, which were all found to be potential con-
founders in the univariate analysis. You are given the below
output table.

Variable OR (95% CI) p-value
Intercept NA 0.25
Age 1.02(1.01,1.03) 0.001
MFI1[0-1] 1.90(1.30,2.70) 0.003
MFI[1-2] 3.30(2.10,5.10) <0.001
MFI[2-3] 7.23(3.00, 17.40) <0.001
MFI [3-4] 2.20(0.90,5.30) 0.08
MFI [4-5] 1.00(0.70, 1.30) 0.95
Sex 1.10(0.80, 1.40) 0.45
Smoking 1.60(1.10, 2.30) 0.01
Steroid Use 1.10(0.83,1.45) 0.37

Model R?: 0.0834
This is a sample output only.

Below is the interpretation:

» Older age was associated with a modest but signifi-
cant risk increase, with an OR = 1.02 (p=0.001). This
means the odds of reintubation increases by 2% each
additional year of age.

» Moving from MFI 1 to 2 roughly tripled the odds (OR
= 3.30, p<0.001).

« Each unit increase in the MFI from 0 to 1 to 2 to 3
resulted in different increases of odds. Moving from
MFI 3 to 4 and 4 to 5, however, were not significantly
associated with reintubation. This likely occurred due
to small sample size of MFI 4’s and 5’s.28

» Smoking raised the odds by 60% (OR = 1.60, p=0.01).

What if you wanted to know how much the odds of rein-
tubation increase from MFI 0 to 2, a two-unit increase?
Then you would need to multiply the odds ratios of MFI
0-1land MFI 1-2. This would equal 1.9 * 3.3 = 6.27. Thus, a
person with MFI score of 2 has 6.27 higher odds of rein-
tubation than a person with MFI score of 0, all else being
equal.28

Example 2: Determining if Convergence Insufficiency
Predicts Hospital Admission for Post-Concussive Syn-
drome?29

You are interested in determining if convergence insuf-
ficiency (CI) predicts the likelihood of being admitted to
the hospital for post-concussive syndrome (PCS) in mild
traumatic brain injury (mTBI). The authors of the paper
construct a multivariate logistic regression including a CI
Symptom Survey (CISS) score and other emergency depart-
ment (ED) variables. The output is shown below:

Multivariate regression model for hospital admission:

Term Estimate P-value Odds Lower Upper

ratio 95% 95%
1.0393 1.0345 1.0440
1.6079 0.7891 2.9688
0.527 0.308 1.19
1.6823 0.8841

Age 0.0385
0.475
-0.6406
0.522

0.015
0.172
0.264
0.357

Abnormal CT scan

Sex (1 = Female)

GCS*scoreinthe
ED

CISS Score

3.201

0.451 0.021 1571 1.364 1762

*GCS = Glasgow-Coma Score
Table used with permission from the authors.2 Note: Some data is fictionalized for the
purposes of example and clarity.

Below is the interpretation:

» Age: Each additional year of age increases the odds of
hospital admission by about 4% (OR=1.039, p=0.015),
making age a significant predictor.

» CISS Score: A higher convergence insufficiency symp-
tom score strongly increases the odds of admission
(OR=1.57, p=0.021), suggesting CI is a meaningful
factor in post-concussive syndrome.

« Abnormal CT, Sex, and GCS: None reached statistical
significance (p-values > 0.05), indicating they did not
robustly predict admission in this sample.

In logistic regression, each “Estimate” reflects how much
the log-odds of the outcome (in this case, being admitted)
change with a 1-unit shift in the predictor. For sex, the es-
timate is —0.6406, which means:

* Being Female (Female = 1, Male = 0) lowers the log-
odds of being admitted by 0.6406.

« In odds-ratio terms, that translates to an OR of ~0.53
(e~0-6406 ~ 0.53), indicating that being female nearly
halves the odds of being admitted for PCS.2%

TRAINING, VALIDATION, AND TESTING DATA SETS

When building a logistic regression model (or any predic-
tive model) it is important to divide your data into three
parts: training, validation, and testing sets. This practice
helps ensure that the final model is both accurate and rele-
vant when caring for future patients.30
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1. Training Set

o Purpose: This is the portion of data used to ac-
tually build the model. In a logistic regression,
the computer “learns” what combination of
clinical measurements (predictor variables) best
predict the outcome of interest (e.g., complica-
tion vs. no complication).

o How It Works: The model calculates and adjusts
coefficients so that it can accurately predict the
outcome for patients in the training set. If, for
example, “age” and “lab value X” are important
predictors, the training set helps the model “fig-
ure that out.”

2. Validation Set

o Purpose: This subset helps you decide how com-
plex the model should be and which predictors
you truly need.

o How It Works: After creating a preliminary
model from the training set, you check how well
it performs on the validation set. If the model
works well on training data but does poorly on
the validation data, it might be overfitting (mem-
orizing details of the training set rather than
learning the general pattern). You can then re-
move or adjust certain predictors based on these
validation results.3!

o Example: You measure the accuracy of your
model on the training data as 95%, but the ac-
curacy on your validation set is only 69%. You
notice that while BMI, diabetes, and hyperten-
sion all have p < 0.01 and an odds ratio well
above 1.0, tobacco use only has p = 0.049 and
an odds ratio of 1.02. You may choose to omit
tobacco use in the model due to its borderline
statistical significance and retrain your model
on the training data without tobacco use. This
process of training and validation is then it-
erated until the performance on the validation
data is deemed acceptable (i.e. close to the
training data).32

3. Testing Set

o Purpose: Once you have settled on your final
model, you use the test set for a one-time check
of how well that model performs on “new” pa-
tients.

o How It Works: Because the test set was never
used in building or adjusting the model, it tells
you how accurate the model might be for actual
clinical practice. It mimics how the model would
behave on patients outside your original sam-
ple.

WHY THIS MATTERS

« Prevent Overfitting: If you only rely on the same data
to both build and judge your model, you might end
up with a model that looks great in theory but fails
on real-world patients. Separating the data into three

parts helps detect and avoid this pitfall.3!

Objective Model Tuning: The validation set gives an
unbiased look at whether specific predictors add real
value or just random noise.

Real-World Confidence: The test set acts like a “dress
rehearsal” for actual practice. If performance is good
on the test set, you have more confidence the model
will work well for new patients.

PUTTING IT ALL TOGETHER

Gather your full dataset (e.g., 1,000 patient records).
Randomly place 70% into the training set, 15% into
the validation set, and 15% into the test set.

Ensure the 3 datasets are stratified — meaning that
each subset retains approximately the same propor-
tion of each class (e.g., disease vs. no disease) as in
the original dataset. If the outcome in your dataset is
imbalanced—say, only 15% of patients have a certain
disease—then stratification aims to preserve that 15%
in both the training and test sets.33

A random split without stratification can, by chance,
place most of the positive cases in the training set
and very few in the test set. This undermines both
training quality and test accuracy.

Fit (train) your logistic regression on the training
set, fine-tune decisions using the validation set, then
confirm final accuracy on the test set.

By following this approach, you’ll end up with a more
reliable logistic regression model—one that avoids simply
memorizing your initial data and instead provides a clini-
cally meaningful prediction for future patients.

JUDGING YOUR MODEL’'S PERFORMANCE

Once you have fitted a logistic regression model, the next

step

is to evaluate how well it performs. Clinically, this

means asking: “Does this model reliably identify patients
who truly have the disease (or outcome), and does it avoid
misclassifying healthy patients as diseased?” Below are
some common performance measures and explanations of
how and why to use them.

1.

2.

Accuracy (and when it fails)
_ Number of Correct Predictions
° Accuracy - Total Predictions * 100%

o At first glance, a high accuracy sounds reassur-
ing. However, if your dataset is imbalanced (for
example, only 5% of patients truly have a rare
complication), a naive model that predicts “no
complication” for every patient could still
achieve 95% accuracy—yet completely fail to
catch actual positive cases.34

Sensitivity (Recall) and Positive Predictive Value
(PPV, aka Precision)

To overcome accuracy’s blind spots, clinicians often use:

1.

Sensitivity (Recall)

True Positives
True Positives-+False Positives)

o Sensitivity = T
o Measures how many of the actual positives (sick
patients) the model correctly identified.

Academic Medicine & Surgery 8
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o High sensitivity = few missed cases.3
2. Positive Predictive Value (Precision)

True Positives

o iti icti —
Positive Predictive Value = (True Positives+False Positives)

o Among those predicted positive by the model,
how many truly are positive?
o High precision = few “false alarms.”35

If you only optimize for sensitivity, you might catch all
true positives but also flag many healthy patients as dis-
eased (lower precision). Conversely, maximizing precision
alone can reduce sensitivity, missing genuine positive
cases.

3. The F1 Score

o Since sensitivity and PPV can trade off against
each other, an alternative measure that balances

them is the F1 score°:
o _ (Sensitivityx PPV)
Fl1=2x« (Sensitivity+PPV)

o This is also known as the harmonic mean of sen-
sitivity and PPV.

o Higher F1 = better balance between capturing
actual positives (sensitivity) and avoiding false
alarms (precision).3¢

o Particularly useful when the dataset is imbal-
anced—a common situation with rare diseases
or outcomes.

VIOLIN PLOTS

High performance on model metrics such as the F1 score
on the test dataset is great, but it does not allow the re-
searcher to visualize the predictions of the model or under-
stand the distribution of the data.3¢ Violin plots let you see
the entire distribution of a variable or predicted value at a
glance, making them useful for exploring the original data
and spotting patterns or outliers. After fitting a model, you
can also use them to compare predicted values across dif-
ferent outcome groups, which quickly reveals whether your
model is effectively separating or explaining those groups.
Thus, it can help the researcher concretize the effects of
their multivariate logistic regression model.3”

Violin plots facilitate the comparison of distribution
across different groups or categories, making it easy to
identify differences or similarities in data spread and cen-
tral tendency, which is crucial in assessing the performance
of the logistic regression models.38

A couple examples and their interpretations are provided
for comprehensive understanding. In Figure 2 below, the
violin plot describes the age distribution of two groups with
normal (blue) and abnormal (orange) head CT scans, strat-
ified by if they presented with vomiting (asso_vomit = 1.0)
or not (asso_vomit = 0.0).3%

Among the patients who did not present with vomiting,
the age of people who had a normal CT scan (blue) was cen-
tered around 20 years, while people with an abnormal CT
scan (orange) who did not vomit had 3 major age ranges —
20, 45 and 80 years old (Figure 2, second from left).

Furthermore, comparing the two orange violin plots (ab-
normal CT scans) shows that patients without vomiting have
three major age groups (as discussed above), whereas those

asso_vomit against age and HEAD_ABNORMAL_NEW as the hue

HEAD_ABNORMAL_NEW
- 0.0

m 10
100 "

80

o
3

age_in_years

s
3

0.0 10
asso_vomit

Figure 2. Violin plot displaying the distribution of age
by vomiting for patients with and without an abnormal
head CT following traumatic brain injury (TBI). Figure
used with permission from the authors.3?

with vomiting cluster at the younger (~20 years old) and
older (~80 years old) extremes. This contrast in clustering
suggests that, among those with abnormal CT scans, indi-
viduals who vomit tend to be either younger or older, while
those who do not vomit have a broader age distribution.3?

The above example illustrates the utility of violin plots
in revealing clusters within the data and highlighting vari-
ations that might not be apparent with other types of plots.
This advantage is particularly useful in clinical research for
identifying subpopulations or patterns that could influence
model outcomes.40

Another crucial way in which violin plots are used is to
evaluate the performance of a logistic regression model by
drawing the predicted probability of being the positive class
or negative class, providing an easily interpretable visual of
how well the model separates the two groups.

In the following example, the y-axis represents the pre-
dicted probability of having ACS (from the logistic regres-
sion model), and the color denotes the true label (e.g., a
patient truly has ACS or not, based on the data). A well-per-
forming model should have the two groups well-separated.
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Violin Plot of Predicted Probabilities by True Class

target
B 10
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=1)
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Predicted Probability (class
o

ACS

Figure 3. Violin plot depicting the results of a logistic
regression model using high-sensitivity troponin to
predict acute coronary syndrome (ACS).

Graph is authors’ own work. Note: Data is fictionalized for purposes of example and may
not reflect real-world relationships.

In this violin plot (Figure 3), the negative class (no ACS)
has a median predicted probability around 0.27 (red), while
the positive class (ACS present) is closer to 0.8 (blue). Be-
cause these two distributions are well separated, we can
conclude that the model effectively distinguishes between
the two classes, indicating a good fit.4! In general, violin
plots give researchers a quick check on model performance
before diving into more detailed and complicated analysis.
By incorporating individual raw data points, violin plots al-
low researchers to observe individual observations along-
side the overall distribution, providing insights into data
variability and potential outliers.

SAMPLE CODE (PYTHON)

Figure 4 is a sample Python script that demonstrates how
to fit a logistic regression model for ACS based on troponin,
using a training and test data split, and plots the corre-
sponding violin plot. There are numerous statistical soft-
wares (e.g., JMP,42 SAS 43 Stata,44 R%%) and python pack-
ages (e.g. scikit-learn?®) that can achieve the same result,
apart from the ones we have chosen here.

CONCLUSION

Logistic regression remains a cornerstone in clinical re-
search for modeling binary outcomes such as disease pres-
ence or absence. Its interpretability via odds ratios and rel-
ative simplicity make it highly attractive for physicians and
researchers seeking clear answers to diagnostic and prog-
nostic questions. By understanding and addressing core as-
sumptions (e.g., linearity in the log-odds, adequate sample
size, and independence of observations), investigators can
maximize both the accuracy and generalizability of their
findings. Properly splitting data into training, validation,
and testing sets helps guard against overfitting, while met-
rics such as sensitivity, precision, and the F1 score—along-
side visualization tools like violin plots—allow for nuanced
evaluation of model performance. When appropriately ap-
plied, validated, and interpreted, logistic regression pro-

vides a robust, clinically meaningful approach to predicting
outcomes and informing evidence-based decisions.

Submitted: March 04, 2025 EDT. Accepted: March 06, 2025
EDT. Published: March 06, 2025 EDT.
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Univariate Logistic Regression in Python

using troponin (predictor) vs. ACS (binary outcome)

Install if needed: pip install pandas, numpy, statsmodels, plotly, sklearn
import pandas as pd

import numpy as np

import statsmodels.formula.api as smf

import plotly.express as px

from sklearn.model_selection import train_test_split

from sklearn.metrics import accuracy_score, fl_score

# 1) Read dataset with 'ACS' (8/1) and 'troponin' columns
df = pd.read_csv('sample_data.csv')

# 2) Train Test S5plit
X = df[['troponin']]
y = df['ACS']

# The key parameter is stratify=y to preserve class ratios
X_train, X_test, y_train, y_test = train_test_split(

X ¥,

test_size=0.2, # 20% of data goes to the test set

random_state=42, # ensures reproducibility

stratify=y # preserves class distribution in train and test sets

)

# 3) Fit logistic model: logit(ACS5) = Intercept + B * troponin
model = sm.Logit(y_train, X_train).fit()

print(model.summary()) # display model output including odds ratio, 95% CI, p-values, and R-squared

# 4) Test model performance on unseen data

# predict data point's probability of being positive class 'ACS'

y_proba = model.predict(X_test)

# calculate accuracy score

accuracy = accuracy_score(y_test, y_proba > 0.5)

print('accuracy is', accuracy)

# evaluate model considering both precision and recall in imbalanced dataset
fl = f1_score(y_test, y_proba> @.5)

print('fl score is', f1)

# 5)Build a violin plet with Plotly Express
X_test['y_proba‘'] = y_proba
# add predictor, target and predicted probability to one dataframe for plotting
test = pd.concat([X_test, y_test], axis = 1)
fig = px.violin(
data_frame=test,

x="ACS', # puts separate violins for y_true=8 vs. 1 on the x-axis
y='y_proba', # the predicted probabilities

color="ACS', # color by the actual class

box=True, # show a box plot inside the violin

points='all’, # show individual data points

hover_data=['ACS'] # extra info on hover
)
fig.update_layout(
width = 6@@,
height = 4@8,
title='Violin Plot of Predicted Probabilities by True Class',
xaxis_title='ACS',
yaxis_title='Predicted Probability (class=1)',
)
fig.show()

Figure 4. Example python script constructing a logistic regression model of ACS and troponin which prints a

table of output and displays the scatterplot. Note that the dataset is a fictional example and does not reflect the real-

world association between ACS and troponin. Script is author’s own work.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License
(CCBY-4.0). View this license’s legal deed at http://creativecommons.org/licenses/by/4.0 and legal code at http://creativecom-

mons.org/licenses/by/4.0/legalcode for more information.
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