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Objectives  
This narrative review aims to provide a comprehensive and clinically relevant synthesis 
of logistic regression applications in clinical medicine, particularly in risk prediction and 
diagnostic modeling. Key objectives include evaluating best practices, addressing 
common pitfalls, and outlining validation techniques when using logistic regression to 
analyze binary outcomes such as disease presence versus absence. 

Methods  
The review synthesizes data from 41 peer-reviewed articles spanning from 1987 to 2025, 
selected from databases including PubMed, MEDLINE, and Scopus using keywords 
including “logistic regression,” “clinical medicine,” “diagnostic studies,” “prognostic 
models,” “odds ratio,” and “model validation.” The narrative approach was chosen to 
integrate findings from various study designs, allowing for a broad discussion on the 
advantages and limitations of logistic regression in clinical research. The manuscript 
details key methodological considerations such as the appropriate coding of continuous 
and categorical variables, verification of core assumptions (e.g., linearity in the log-odds, 
independence of observations, absence of perfect separation), and adherence to sample 
size requirements. In addition, the review highlights the importance of splitting datasets 
into training, validation, and testing subsets, and incorporates performance metrics 
including sensitivity, specificity, precision, and F1 scores. 

Results  
The review reveals that logistic regression remains a cornerstone technique in clinical 
risk prediction due to its interpretability and robust framework for handling binary 
outcomes. Findings indicate that logistic regression models, when appropriately 
validated, significantly enhance diagnostic accuracy and provide reliable risk estimates 
through odds ratios and confidence intervals. The review identifies that data integrity, 
proper variable categorization, and rigorous assumption checks are critical for avoiding 
model misclassification. Furthermore, visual tools like violin plots are highlighted for 
their utility in comparing distributions of predicted probabilities across different 
outcome groups. Real-world examples demonstrate that factors such as biomarker levels 
(e.g., troponin in acute coronary syndrome) and patient characteristics (e.g., albumin 
levels, BMI in postoperative infections) are effectively modeled using logistic regression, 
leading to clinically meaningful inferences. 

Conclusion  
Logistic regression is an indispensable tool in clinical research for predicting binary 
outcomes and informing evidence-based practice. By integrating a detailed discussion of 
best practices, common pitfalls, and model validation techniques, the manuscript offers a 
definitive guide for clinicians and researchers. It emphasizes that rigorous adherence to 
methodological standards—from data preparation to performance evaluation—can 
significantly improve predictive accuracy and clinical decision-making. This study hopes 
to serve as a valuable reference to clinicians, and explain statistical and machine learning 
topics in a clinical context that is easily understood and widely accessible. 
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INTRODUCTION 

Clinical medicine relies on data derived from a variety of 
sources, including patient interviews, physical assess
ments, laboratory tests, and imaging studies.1 These data 
are compiled in numerous formats and can be broadly cat
egorized according to variable type—for instance, contin
uous measures (e.g., serum cholesterol levels), categorical 
classifications (e.g., presence or absence of a disease), nom
inal groupings (e.g., blood type), or ordinal scales (e.g., dis
ease severity scores).2 The choice of an appropriate analyti
cal method depends heavily on these variable types: certain 
statistical techniques are more suitable for continuous vari
ables, while others are better suited to categorical or or
dinal data.3 When data collection or storage is inconsis
tent—for example, misclassifying a continuous variable as 
categorical—analyses can become flawed, resulting in bi
ased or incorrect conclusions, and undermining the relia
bility of research findings.4 

Clinical research studies typically employ designs such 
as prospective and retrospective cohorts, as well as case-
control studies. Each of these designs calls for a tailored 
approach to analysis.5 Prospective cohort studies collect 
data going forward in time to observe outcomes, often en
abling stronger inference regarding temporal relationships. 
Retrospective cohorts draw on existing records to examine 
outcomes that have already occurred, requiring careful at
tention to data completeness and potential biases in 
record-keeping. Case-control studies, by contrast, start 
with the identification of cases (individuals with a partic
ular outcome) and controls (those without the outcome), 
and then look back in time to identify explanatory vari
ables.5 Because each study design has its own strengths, 
limitations, and typical analytical strategies, recognizing 
how data were gathered is essential for selecting valid and 
meaningful statistical methods. 

In many clinical research scenarios, the choice of 
method becomes more straightforward when all variables 
share the same type (e.g., multiple continuous variables). 
However, researchers commonly face situations where the 
independent variable (x) is continuous—such as blood pres
sure or a biomarker concentration—and the dependent 
variable (y) is categorical—such as “disease present vs. dis
ease absent.” Logistic regression is frequently used to ad
dress this type of question; it provides a way to estimate 
the probability of a particular outcome (e.g., the presence 
of disease) in relation to one or more predictors, making it 
especially valuable in diagnostic, prognostic, or risk-factor 
analyses.6 

A concrete example of logistic regression’s utility can 
be seen in studies that predict whether patients with chest 
pain are likely to have an acute coronary syndrome.7 Using 
factors like troponin levels, blood pressure, and electro
cardiogram findings—each of which may be measured on 
different scales—a logistic regression model can estimate 
the probability that a patient truly has a significant cardiac 
event.8 This kind of approach helps clinicians triage pa
tients quickly and allocate resources more efficiently. With
out a sound logistic regression framework, such data might 

be analyzed incorrectly (for instance, by treating these vari
ables as if they were all continuous and had a linear rela
tionship to the probability of disease), leading to subopti
mal or misguided clinical decisions.9 

Beyond these foundational considerations, it is impor
tant to recognize that logistic regression comes with several 
key assumptions that must be met for valid inference. Chief 
among these is the assumption that the log-odds of the 
outcome are linearly related to the predictor variables.10 

Violations of this assumption can lead to model misspec
ification and misinterpretation of results. Logistic regres
sion also outputs odds ratios, which reflect the change in 
the odds of an outcome for a one-unit change in a predictor 
variable.11,12 While odds ratios are incredibly useful in clin
ical settings, equating them directly to risk ratios or inter
preting them without regard to baseline probabilities can 
lead to misleading conclusions about a disease’s absolute 
risk.11,12 

A further consideration is that misuse of logistic regres
sion—such as neglecting confounding variables, failing to 
check for multicollinearity, or inadequately handling miss
ing data—can undermine the validity of research findings 
and contribute to flawed clinical decision-making.13 Con
versely, when properly applied and validated, logistic re
gression plays a critical role in informing treatment strate
gies, screening protocols, and the allocation of healthcare 
resources. Its relatively straightforward interpretability, as 
well as the ability to incorporate p-values and confidence 
intervals, sets logistic regression apart from more complex 
machine learning approaches, making it a staple in evi
dence-based medicine despite the emergence of alternative 
modeling techniques.14 

This narrative review focuses on the proper uses, ap
plications, and validation of logistic regression in clinical 
medicine. We will explain how and when logistic regression 
is most appropriate, outline the key variable types involved, 
address common misconceptions about the method, and 
differentiate the nuances of univariate versus multivariate 
modeling. Finally, we will discuss strategies for developing, 
validating, and testing logistic regression models to ensure 
they are both robust and generalizable across a range of 
clinical settings. 

METHODS 

This study is a narrative review of 41 papers published be
tween 1987 and 2025 focusing on the use of logistic regres
sion in clinical research. We chose a narrative review ap
proach to synthesize findings from a broad array of study 
designs and clinical contexts, rather than following the 
stricter protocols of a systematic review. We conducted an 
initial literature search using the databases PubMed, MED
LINE, and Scopus, combining the keywords “logistic regres
sion,” “clinical medicine,” “medical research,” “diagnostic 
studies,” “prognostic models,” “retrospective,” “prospec
tive,” and “odds ratio.” We included both primary research 
articles and review papers that discussed the applications, 
assumptions, and validation techniques associated with lo
gistic regression in a clinical setting. 
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During the selection process, we screened titles and ab
stracts to identify studies that directly employed logistic re
gression for analyzing categorical outcomes (e.g., presence/
absence of a disease) and addressed core assumptions (e.g., 
linearity in the log-odds). We also sought examples illus
trating both best practices and common pitfalls—such as 
failing to account for confounding variables, misinterpret
ing odds ratios, or not verifying model fit. Articles focus
ing solely on non-clinical contexts (e.g., business applica
tions) or on other statistical methods without substantial 
mention of logistic regression were excluded. Each author 
then independently reviewed the full text of the included 
articles, extracting information on study design, model-
building strategies, validation processes, and interpretative 
guidelines. Findings were subsequently cross verified in 
collaborative discussions, ensuring consistency and com
pleteness in our synthesis. 

Because this is a narrative review, we did not perform 
a formal meta-analysis or statistical pooling of results. In
stead, we integrated and summarized key themes that 
emerged across studies, noting both methodological rigor 
and frequent analytical challenges. The main areas of focus 
included: (1) the role of logistic regression in different 
study designs (prospective and retrospective cohorts, case-
control studies), (2) best practices for data preparation and 
variable selection, (3) interpretation of logistic regression 
outputs (particularly odds ratios), (4) strategies for check
ing model assumptions (such as linearity in the log-odds 
and absence of perfect separation), and (5) methods of 
model validation (e.g., calibration, discrimination, cross-
validation). We also compiled examples illustrating how 
authors dealt with real-world issues like missing data, 
collinearity, or small sample sizes. Through this process, we 
aimed to create a cohesive, clinically oriented review that 
is relevant to physicians, researchers, and other healthcare 
professionals interested in the robust application of logistic 
regression. 

DISCUSSION 

CONCEPTS OF LOGISTIC REGRESSION AND WHEN TO 
USE 

Logistic regression aims to predict the probability of an 
event occurring based on a linear combination of predictor 
variables.9 Because of this, it requires the dependent (y) 
variable to be a binary outcome (i.e. 0 or 1, positive or neg
ative for a disease). The independent (x) variable(s) may be 
continuous (e.g. BMI, hematocrit) or categorical (e.g. gender, 
ASA Class), however at least one of the independent vari
ables must be continuous. If the goal of your analysis is to 
predict the probability of an event occurring or not, using 
continuous data as a predictor, logistic regression may be 
an appropriate model.9 

Linear regression is easily understood for having the 
value you predict (y) be equal to a linear combination of 
the predictor (x) variables.15 This equation is shown below, 
where  represents the outcome,  represent the pre

Figure 1. Example of a univariate logistic regression       
model using high sensitivity troponin to predict the         
likelihood of acute coronary syndrome. *Note that this         
is fictional data and not intended to represent the true           
relationship between ACS and troponins. Graph is        
author’s own work.    

dictors,  represents the Y-intercept, and  represent 
the coefficients. 

Equation 1.  Linear Regression.16 

Since logistic regression aims to predict a probability, we 
will replace  with  for probability. We then need to ensure 
that the value for  remains between 0 and 1. We achieve 
this by applying the log-odds transformation to , which re
sults in the equation below.17 Again,  represents the prob
ability,  represent the predictors,  represents the Y-
intercept, and  represent the coefficients. 

Rearranging, we can solve for , which equals: 

Equation 2.  Logistic Regression.12 

This transformation ensures that  remains between 0 
and 1 and gives us a sigmoid-shaped (“S”- shaped) curve 
representing the probability of an event occurring given a 
particular level of the predictor value. An example using 
high-sensitivity troponin to predict the likelihood of acute 
coronary syndrome (ACS) via logistic regression is shown in 
Figure 1 .  

INTERPRETATION OF LOGISTIC REGRESSION OUTPUT 

When you successfully construct a logistic regression 
model, a table of output will typically be provided along 
with the equation and graph. This table of output contains 
valuable information about the accuracy, strength of asso
ciation, statistical, and clinical significance of the model 
and as such, it is essential for the clinical researcher to un
derstand the interpretation of these values18 (Table 1 ).  
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Table 1. Most common outputs from a logistic regression model and their interpretations.            

Logistic 
Regression 

Output 
Interpretation 

Intercept 
( ) 

The baseline log-odds of the outcome when all predictors are zero. A negative intercept suggests a low baseline 
probability of the event; a positive one suggests a higher baseline probability. 

Coefficient 
( ) 

The log-odds change for a one-unit increase in the predictor variable . A positive coefficient indicates the 
event becomes more likely as  increases. 

Odds Ratio 
( ) 

Exponentiating a coefficient yields the odds ratio. For example, an odds ratio of 2 means the odds of the event 
double for each one-unit increase in that predictor. 

Standard 
Error (SE) 

Reflects uncertainty in the coefficient estimate. Larger SE implies less precise estimation of the effect of that 
predictor. 

p-value 
Tests whether the coefficient is significantly different from zero. If p < 0.05, the predictor’s association with the 
outcome is typically considered statistically significant. 

Confidence 
Interval 
(e.g., 95% 
CI) 

The range in which the true odds ratio (or coefficient) is likely to fall. If the CI does not include 1 (for odds ratios), 
the effect is statistically significant at that level. 

Pseudo R² 
(e.g., 
Nagelkerke 
R²) 

A rough measure of how well the model explains variation in the outcome. A value above 0.15 is generally 
considered ‘good’ in clinical medicine.19 Higher values indicate better explanatory power, although it does not 
behave exactly like R² in linear regression. 

AIC (Akaike 
Information 
Criterion) 

A measure of model quality that penalizes complexity. Lower AIC values typically indicate a better model fit when 
comparing multiple models on the same dataset. 

For example, let’s interpret the output of the prior re
gression using high-sensitivity troponin to predict ACS. Be
low is the output: 
Model Fit Metrics  : 

Term 
Coefficient 
(β) β

Std. 
Error 

z-
value 

p-
value 

Odds 
Ratio 

95% CI 
(OR) 

Intercept -3.50 0.60 -5.83 <0.001 – – 

Troponin 1.20 0.25 4.80 <0.001 3.32 
(2.10, 
5.30) 

Which has the following interpretation: 

ASSUMPTIONS AND PRECONDITIONS FOR USING 
LOGISTIC REGRESSION 

As with most statistical models, logistic regression relies on 
a core set of assumptions and preconditions that the data 
must adhere to before the model can be reliably applied. 
Below, we examine each of the preconditions with an exam
ple from the prior ACS model. 

1. BINARY OUTCOME18 

Assumption: The outcome variable (ACS) must be coded as 
0 = no ACS    or 1 = ACS   (or similarly binary). 

Example: 

2. INDEPENDENCE OF OBSERVATIONS10 

Assumption: Each data point (e.g., each patient) should be 
independent of the others. 

• Pseudo R²  = 0.28 
• AIC = 190.2 

• A negative intercept  (–3.50) implies that at near-
zero troponin, the baseline probability of ACS is low. 

• The coefficient of 1.20   (log-odds scale) translates to 
an odds ratio of ~3.32   , meaning each unit rise in 
troponin multiplies the odds of having ACS by over 
three. 

• The p-value < 0.001   in the troponin row and 95% CI   
well above 1 confirm that high-sensitivity troponin is 
a strong, statistically significant predictor of ACS. 

• The pseudo-R² of 0.28   suggests that troponin alone 
explains why 28% of individuals in the dataset end up 
with or without ACS. This is generally considered a 
‘good’ value in clinical studies.19 

• An AIC of 190.2  , by itself, doesn’t say “good” or 
“bad” in absolute terms; it mainly becomes meaning
ful when compared with the AIC of another logistic 
regression model predicting the same outcome. 

• Why it matters  : Logistic regression models the prob
ability of a binary event. 

• How to check  : 
◦ Confirm your data file has a clear 0/1 (or “no/

yes”) coding for ACS. 
◦ If there are multiple categories (e.g., ACS sub

types), you may need different coding or a dif
ferent analysis (multinomial logistic regres
sion). 

• Ensure the dataset has acs = 0 for non-ACS patients 
and acs = 1 for ACS patients. 
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Example: 

3. NO PERFECT SEPARATION20 

Assumption: There should be no single predictor   (or 
combination of predictors) that perfectly separates  the 0 
and 1 outcome groups. 

Example: 

4. LOG-ODDS LINEARITY10 

Assumption: Each predictor (e.g., troponin) is assumed to 
have a linear relationship with the log-odds     of the out
come. 

Example: 

5. NO STRONG MULTICOLLINEARITY (FOR MULTIPLE 
PREDICTORS)10 

Assumption: When using more than one predictor (e.g., 
troponin + blood pressure + age), those predictors shouldn’t 
be highly correlated with each other. 

Example: 

6. ADEQUATE SAMPLE SIZE21 

Assumption: You need enough data (particularly enough 
events = ACS=1 cases) to reliably estimate coefficients. 

Example: 

MULTIVARIATE LOGISTIC REGRESSION 

Multivariate logistic regression is an extension of simple 
(univariate) logistic regression that models the probability 
of a binary outcome (such as disease vs. no disease) using 
multiple predictor variables. Instead of analyzing the effect 
of a single factor—like one biomarker—on the odds of hav

• Why it matters  : Standard logistic regression meth
ods assume that no repeated measures or clusters of 
correlated data are present. 

• How to check  : 
◦ Confirm that each row in your dataset is from a 

distinct patient. 
◦ If repeated measurements or clusters exist (e.g., 

multiple admissions of the same patient), con
sider mixed-effects or other specialized models. 

• Verify that each troponin measurement in your 
dataset comes from a different patient, so there is 
no repeated-measures structure (e.g., patient return
ing multiple times). 

• Why it matters  : If troponin alone always 100% pre
dicts ACS vs. no ACS, the model parameters can be
come infinite (the log-odds blow up). 

• How to check  : 
◦ Plot troponin vs. ACS status (0 or 1). 
◦ Look for a clean cutoff where all ACS=1 patients 

have troponin above X and all ACS=0 patients 
have troponin below X with no overlap. If that 
exists, you likely have perfect separation. 

• If in your dataset, everyone with troponin >10 is 
ACS=1 and everyone with troponin ≤10 is ACS=0, 
you have perfect separation. Typically, that’s rare, 
but it can happen in small samples. 

• Why it matters  : Logistic regression is essentially lin
ear in the log-odds space. If the relationship is non
linear, the model may misfit. 

• How to check  : 
1. Transform troponin into categories    (e.g., bins 

of troponin) and check if the log-odds of ACS 
change in roughly a straight-line fashion. 

2. Use polynomial or spline terms     in the model 
to see if they significantly improve model fit. 

3. Partial residual plots   to visualize if the log-
odds appear linear. 

1. Create bins for troponin    (for example, 0–1, 1–3, 
3–5, etc.). 

2. Calculate ACS rates   in each bin (i.e., the proportion 
of patients who have ACS in that bin). 

3. Convert each proportion   (ACS rate) to log-odds: 

4. Plot the log-odds of ACS against the midpoint of 
each troponin bin. 

5. If these points roughly form a straight line , it sug
gests the log-odds relationship is linear—meaning 
the logistic regression model is a good fit for tro
ponin. 

• Why it matters  : Multicollinearity inflates standard 
errors, making the model coefficients unstable. 

• How to check  : 
◦ A simple linear regression can reveal whether 

two or more predictors are very strongly corre
lated (e.g., r > 0.8). 

• If you’re modeling ACS with troponin, BNP, and cre
atinine, you’d check the correlation between tro
ponin and BNP to ensure troponin isn’t extremely 
highly correlated with BNP (another cardiac bio
marker). If they are, it may cause unstable estimates. 

• Why it matters  : Too few cases with ACS leads to an 
overfitted model or inflated standard errors. 

• How to check  : 
◦ Rule of thumb: ≥10 events per predictor   . If 

you have 1 predictor (troponin) and only 15 
ACS patients out of 300, that’s generally ac
ceptable. But adding more predictors would re
quire more ACS events. 

• If your dataset has 300 patients, 50 of whom have 
ACS, that’s generally enough to handle upto 5  pre
dictors in logistic regression. If you want to add 6+ 
predictors, you might be pushing the 10-events-per-
predictor rule. There is, however, evidence in certain 
cases to allow for this.21 
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ing an outcome, multivariate logistic regression incorpo
rates a set of predictors (e.g., age, blood pressure, bio
marker levels, comorbidities) all at once.22 By doing so, it 
can control for confounding variables and tease apart the 
individual contribution of each predictor while holding oth
ers constant.23 This is particularly valuable in clinical re
search, where patients often present with a combination 
of risk factors, and the relationship among those factors 
can be complex. Multivariate logistic regression helps re
searchers and clinicians identify which variables are the 
strongest drivers of a given outcome, improve risk stratifi
cation, and make better-informed decisions about patient 
diagnosis and management.23 

Multivariate logistic regression utilizes the same equa
tions presented above (Equation 2),  and requires coding 
binary predictor variables (e.g., smoker or non-smoker) as 
1 or 0 (e.g. smoker = 1, non-smoker = 0). Similarly, ordinal 
predictor variables that are not continuous but have an or
der to them, such as ASA class, must be coded as 1-6 to fit 
into the model.24 

Generally, for a research manuscript, univariate models 
are constructed for each predictor variable and each po
tential confounding variable prior to constructing the mul
tivariate model.25 This allows the researcher to identify 
which variables are associated with the outcome of interest 
and include only those that are significantly associated 
with the outcome in the multivariate model. This helps to 
satisfy precondition #6, which states that you must have 
~10x the number of positive events in your data as predictor 
variables.21 

For example, in a study of 1,472 patients undergoing 
panniculectomy, investigators initially tested five predic
tors in univariate logistic regression for their association 
with postoperative wound infection: age, BMI, diabetes sta
tus, smoking status, and preoperative albumin. They found 
that lower albumin and higher BMI were significantly asso
ciated with an increased risk of wound infection (p < 0.01), 
while age, diabetes, and smoking did not reach significance. 
As a result, only albumin and BMI were carried forward into 
the multivariate logistic regression model, ensuring that 
the final analysis focused on the variables truly predictive 
of wound infection in this patient population.26 

Let’s interpret some sample output for the prior study, as 
shown below: 

Multivariate Logistic Regression for Postoperative      
Wound Infection (n = 1,472).    26  

Parameter 
Coefficient 
(β) β

Std. 
Error 

p-
value 

Odds 
Ratio 

95% CI for 
OR 

Intercept -5.15 0.78 <0.001 – – 

Albumin (per -1 g/
dL) 

1.61 0.32 <0.001 5.00 (2.70, 9.20) 

BMI (per +1 kg/
m²) 

0.05 0.02 0.003 1.05 (1.02, 1.08) 

Interpretation 

Multivariate logistic regression allows the researcher to 
examine the effects of multiple different variables on a par
ticular outcome and compare the relative association be
tween them.27 This allows the researcher to make an infer
ence on how much a change in one variable matters. In the 
previous example, we can see that a decrease in 1g/dL of al
bumin increases the odds of wound infection by 5x, while 
an increase in one point of BMI only increases the odds of 
wound infection by 1.05x. 

One way to think about that difference in effect sizes is 
to ask, “How many single-point increases in BMI would it 
take to have the same impact on infection odds as dropping 
albumin by 1 g/dL?” Mathematically, because each 1-point 
rise in BMI multiplies the odds by about 1.05, you need 
around 33 incremental increases for the product to reach 5 
(i.e., (1.05)33 ≈ 5). Practically, that means a huge change in 
BMI is needed to match the same fivefold jump in odds of 
infection that comes from a single 1 g/dL drop in albumin. 

WHY 33 BMI POINTS? 

REAL-WORLD CAVEATS 

Still, the calculation helps illustrate how much bigger an 
effect (on the odds of infection) a 1 g/dL drop in albumin 
exerts relative to the effect of modest BMI increases.26 

1. Albumin: A 1 g/dL decrease in preoperative albumin 
is associated with a log-odds coefficient of 1.61, cor
responding to an odds ratio of 5.00. In other words, 

each 1 g/dL drop in albumin multiplies the odds of 
wound infection by five (95% CI: 2.70–9.20). The p < 
0.001 indicates high statistical significance. 

2. BMI: Each additional 1 kg/m² in BMI increases the 
log-odds of wound infection by 0.05, translating to an 
odds ratio of 1.05 (95% CI: 1.02–1.08). Although this 
effect is modest, it is still statistically significant (p = 
0.003). 

3. Intercept: Represents the baseline log-odds of wound 
infection when albumin and BMI are at zero (not clin
ically relevant as an absolute value, but important 
mathematically for the model). 

• The odds ratio (OR) for a 1 kg/m² increase in BMI is 
1.05. 

• To get the same total increase in odds (×5) as a one-
unit drop in albumin, you solve the equation: 

• Interpreted literally, a 33-unit rise in BMI (e.g., from 
a BMI of 25 to 58) yields about the same multiplica
tive effect on the odds of infection as dropping 1 g/dL 
in albumin. 

• A 33-point BMI change is huge in clinical terms, so 
while the math is correct, it highlights that albumin 
has a substantially larger effect per “standard unit 
change” than BMI in this particular model. 

• Always remember these are model-driven inferences; 
in practice, BMI changes of that magnitude are rarely 
instantaneous or linear, and albumin levels can shift 
for many reasons. 
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MULTIVARIATE EXAMPLES 

We have included some examples of how multivariate logis
tic regression is used in different ways in real-life scenarios, 
to emphasize accurate interpretation of the model in vari
ous scenarios. 
Note: All examples, while based on real research, are hypo

thetical scenarios used to illustrate concepts of logistic regres
sion in this manuscript and may not represent the true rela
tionship between any variables mentioned. 
Example 1:  Using a Frailty Score to Predict Reintubation 

in Thoracic Surgery28 

Unplanned reintubation is a major pulmonary complica
tion in thoracic surgery. You are interested in predictors of 
this outcome. Recently, the 5-item modified frailty index 
(MFI-5) has begun to be used in preoperative planning 
alongside the standard ASA classification at your hospital, 
and you want to evaluate the effect of MFI-5 in predicting 
reintubation in thoracic surgery. The MFI-5 separates 
frailty into five classes: 1, 2, 3, 4, and 5, much like the ASA 
classification. 

A study was done evaluating MFI-5 in predicting reintu
bation and utilized a multivariate logistic regression model 
including MFI-5 and age, sex, smoking status, and preoper
ative steroid use, which were all found to be potential con
founders in the univariate analysis. You are given the below 
output table. 

Variable OR (95% CI) p-value 

Intercept NA 0.25 

Age 1.02 (1.01, 1.03) 0.001 

MFI [0-1] 1.90 (1.30, 2.70) 0.003 

MFI [1-2] 3.30 (2.10, 5.10) <0.001 

MFI [2-3] 7.23 (3.00, 17.40) <0.001 

MFI [3-4] 2.20 (0.90, 5.30) 0.08 

MFI [4-5] 1.00 (0.70, 1.30) 0.95 

Sex 1.10 (0.80, 1.40) 0.45 

Smoking 1.60 (1.10, 2.30) 0.01 

Steroid Use 1.10 (0.83, 1.45) 0.37 

Model R2: 0.0834 
This is a sample output only. 

Below is the interpretation: 

What if you wanted to know how much the odds of rein
tubation increase from MFI 0 to 2, a two-unit increase? 
Then you would need to multiply the odds ratios of MFI 
0-1and MFI 1-2. This would equal 1.9 * 3.3 = 6.27. Thus, a 
person with MFI score of 2 has 6.27 higher odds of rein
tubation than a person with MFI score of 0, all else being 
equal.28 

Example 2:  Determining if Convergence Insufficiency 
Predicts Hospital Admission for Post-Concussive Syn
drome29 

You are interested in determining if convergence insuf
ficiency (CI) predicts the likelihood of being admitted to 
the hospital for post-concussive syndrome (PCS) in mild 
traumatic brain injury (mTBI). The authors of the paper 
construct a multivariate logistic regression including a CI 
Symptom Survey (CISS) score and other emergency depart
ment (ED) variables. The output is shown below: 

Multivariate regression model for hospital admission:       

Term Estimate P-value Odds 
ratio 

Lower 
95% 

Upper 
95% 

Age 0.0385 0.015 1.0393 1.0345 1.0440 

Abnormal CT scan 0.475 0.172 1.6079 0.7891 2.9688 

Sex (1 = Female) -0.6406 0.264 0.527 0.308 1.19 

GCS* score in the 
ED 

0.522 0.357 1.6823 0.8841 3.201 

CISS Score 0.451 0.021 1.571 1.364 1.762 

*GCS = Glasgow-Coma Score 
Table used with permission from the authors.29 Note: Some data is fictionalized for the 
purposes of example and clarity. 

Below is the interpretation: 

In logistic regression, each “Estimate” reflects how much 
the log-odds of the outcome (in this case, being admitted) 
change with a 1-unit shift in the predictor. For sex, the es
timate is –0.6406, which means: 

TRAINING, VALIDATION, AND TESTING DATA SETS 

When building a logistic regression model (or any predic
tive model) it is important to divide your data into three 
parts: training, validation, and testing sets. This practice 
helps ensure that the final model is both accurate and rele
vant when caring for future patients.30 

• Older age was associated with a modest but signifi
cant risk increase, with an OR = 1.02 (p=0.001). This 
means the odds of reintubation increases by 2% each 
additional year of age. 

• Moving from MFI 1 to 2 roughly tripled the odds (OR  
= 3.30 , p<0.001). 

• Each unit increase in the MFI from 0 to 1 to 2 to 3 
resulted in different increases of odds. Moving from 
MFI 3 to 4 and 4 to 5, however, were not significantly 
associated with reintubation. This likely occurred due 
to small sample size of MFI 4’s and 5’s.28 

• Smoking raised the odds by 60% (OR = 1.60, p=0.01). 

• Age: Each additional year of age increases the odds of 
hospital admission by about 4% (OR=1.039, p=0.015), 
making age a significant predictor. 

• CISS Score: A higher convergence insufficiency symp
tom score strongly increases the odds of admission 
(OR=1.57, p=0.021), suggesting CI is a meaningful 
factor in post-concussive syndrome. 

• Abnormal CT, Sex, and GCS: None reached statistical 
significance (p-values > 0.05), indicating they did not 
robustly predict admission in this sample. 

• Being Female (Female = 1, Male = 0) lowers the log-
odds of being admitted by 0.6406. 

• In odds-ratio terms, that translates to an OR of ~0.53 
( ), indicating that being female nearly 
halves the odds of being admitted for PCS.29 
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WHY THIS MATTERS 

PUTTING IT ALL TOGETHER 

By following this approach, you’ll end up with a more 
reliable logistic regression model—one that avoids simply 
memorizing your initial data and instead provides a clini
cally meaningful prediction for future patients. 

JUDGING YOUR MODEL’S PERFORMANCE 

Once you have fitted a logistic regression model, the next 
step is to evaluate how well it performs. Clinically, this 
means asking: “Does this model reliably identify patients 
who truly have the disease (or outcome), and does it avoid 
misclassifying healthy patients as diseased?” Below are 
some common performance measures and explanations of 
how and why to use them. 

To overcome accuracy’s blind spots, clinicians often use: 

1. Training Set   

2. Validation Set   

3. Testing Set   

◦ Purpose: This is the portion of data used to ac
tually build the model. In a logistic regression, 
the computer “learns” what combination of 
clinical measurements (predictor variables) best 
predict the outcome of interest (e.g., complica
tion vs. no complication). 

◦ How It Works: The model calculates and adjusts 
coefficients so that it can accurately predict the 
outcome for patients in the training set. If, for 
example, “age” and “lab value X” are important 
predictors, the training set helps the model “fig
ure that out.” 

◦ Purpose: This subset helps you decide how com
plex the model should be and which predictors 
you truly need. 

◦ How It Works: After creating a preliminary 
model from the training set, you check how well 
it performs on the validation set. If the model 
works well on training data but does poorly on 
the validation data, it might be overfitting (mem
orizing details of the training set rather than 
learning the general pattern). You can then re
move or adjust certain predictors based on these 
validation results.31 

◦ Example: You measure the accuracy of your 
model on the training data as 95%, but the ac
curacy on your validation set is only 69%. You 
notice that while BMI, diabetes, and hyperten
sion all have p < 0.01 and an odds ratio well 
above 1.0, tobacco use only has p = 0.049 and 
an odds ratio of 1.02. You may choose to omit 
tobacco use in the model due to its borderline 
statistical significance and retrain your model 
on the training data without tobacco use. This 
process of training and validation is then it
erated until the performance on the validation 
data is deemed acceptable (i.e. close to the 
training data).32 

◦ Purpose: Once you have settled on your final 
model, you use the test set for a one-time check 
of how well that model performs on “new” pa
tients. 

◦ How It Works: Because the test set was never 
used in building or adjusting the model, it tells 
you how accurate the model might be for actual 
clinical practice. It mimics how the model would 
behave on patients outside your original sam
ple. 

• Prevent Overfitting: If you only rely on the same data 
to both build and judge your model, you might end 
up with a model that looks great in theory but fails 
on real-world patients. Separating the data into three 
parts helps detect and avoid this pitfall.31 

• Objective Model Tuning: The validation set gives an 
unbiased look at whether specific predictors add real 
value or just random noise. 

• Real-World Confidence: The test set acts like a “dress 
rehearsal” for actual practice. If performance is good 
on the test set, you have more confidence the model 
will work well for new patients. 

1. Gather your full dataset (e.g., 1,000 patient records). 
2. Randomly place 70% into the training set, 15% into 

the validation set, and 15% into the test set. 
3. Ensure the 3 datasets are stratified – meaning that 

each subset retains approximately the same propor
tion of each class (e.g., disease vs. no disease) as in 
the original dataset. If the outcome in your dataset is 
imbalanced—say, only 15% of patients have a certain 
disease—then stratification aims to preserve that 15% 
in both the training and test sets.33 

• A random split without stratification can, by chance, 
place most of the positive cases in the training set 
and very few in the test set. This undermines both 
training quality and test accuracy. 

4. Fit (train) your logistic regression on the training 
set, fine-tune decisions using the validation set, then 
confirm final accuracy on the test set. 

1. Accuracy (and when it fails) 

2. Sensitivity (Recall) and Positive Predictive Value 
(PPV, aka Precision) 

◦ Accuracy = 
◦ At first glance, a high accuracy sounds reassur

ing. However, if your dataset is imbalanced (for 
example, only 5% of patients truly have a rare 
complication), a naive model that predicts “no 
complication” for every patient could still 
achieve 95% accuracy—yet completely fail to 
catch actual positive cases.34 

1. Sensitivity (Recall) 
◦ 
◦ Measures how many of the actual positives (sick 

patients) the model correctly identified. 
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If you only optimize for sensitivity, you might catch all 
true positives but also flag many healthy patients as dis
eased (lower precision). Conversely, maximizing precision 
alone can reduce sensitivity, missing genuine positive 
cases. 

VIOLIN PLOTS 

High performance on model metrics such as the F1 score 
on the test dataset is great, but it does not allow the re
searcher to visualize the predictions of the model or under
stand the distribution of the data.36 Violin plots let you see 
the entire distribution of a variable or predicted value at a 
glance, making them useful for exploring the original data 
and spotting patterns or outliers. After fitting a model, you 
can also use them to compare predicted values across dif
ferent outcome groups, which quickly reveals whether your 
model is effectively separating or explaining those groups. 
Thus, it can help the researcher concretize the effects of 
their multivariate logistic regression model.37 

Violin plots facilitate the comparison of distribution 
across different groups or categories, making it easy to 
identify differences or similarities in data spread and cen
tral tendency, which is crucial in assessing the performance 
of the logistic regression models.38 

A couple examples and their interpretations are provided 
for comprehensive understanding. In Figure 2  below, the 
violin plot describes the age distribution of two groups with 
normal (blue) and abnormal (orange) head CT scans, strat
ified by if they presented with vomiting (asso_vomit = 1.0) 
or not (asso_vomit = 0.0).39 

Among the patients who did not present with vomiting, 
the age of people who had a normal CT scan (blue) was cen
tered around 20 years, while people with an abnormal CT 
scan (orange) who did not vomit had 3 major age ranges – 
20, 45 and 80 years old (Figure 2 , second from left). 

Furthermore, comparing the two orange violin plots (ab
normal CT scans) shows that patients without vomiting have 
three major age groups (as discussed above), whereas those 

Figure 2. Violin plot displaying the distribution of age        
by vomiting for patients with and without an abnormal          
head CT following traumatic brain injury (TBI). Figure         
used with permission from the authors.     39  

with vomiting cluster at the younger (~20 years old) and 
older (~80 years old) extremes. This contrast in clustering 
suggests that, among those with abnormal CT scans, indi
viduals who vomit tend to be either younger or older, while 
those who do not vomit have a broader age distribution.39 

The above example illustrates the utility of violin plots 
in revealing clusters within the data and highlighting vari
ations that might not be apparent with other types of plots. 
This advantage is particularly useful in clinical research for 
identifying subpopulations or patterns that could influence 
model outcomes.40 

Another crucial way in which violin plots are used is to 
evaluate the performance of a logistic regression model by 
drawing the predicted probability of being the positive class 
or negative class, providing an easily interpretable visual of 
how well the model separates the two groups. 

In the following example, the y-axis represents the pre
dicted probability of having ACS (from the logistic regres
sion model), and the color denotes the true label (e.g., a 
patient truly has ACS or not, based on the data). A well-per
forming model should have the two groups well-separated. 

2. Positive Predictive Value (Precision) 
◦ High sensitivity = few missed cases.35 

◦ 
◦ Among those predicted positive by the model, 

how many truly are positive? 
◦ High precision = few “false alarms.”35 

3. The F1 Score 
◦ Since sensitivity and PPV can trade off against 

each other, an alternative measure that balances 
them is the F1 score36: 

◦ 
◦ This is also known as the harmonic mean of sen

sitivity and PPV. 
◦ Higher F1 = better balance between capturing 

actual positives (sensitivity) and avoiding false 
alarms (precision).36 

◦ Particularly useful when the dataset is imbal
anced—a common situation with rare diseases 
or outcomes. 
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Figure 3. Violin plot depicting the results of a logistic         
regression model using high-sensitivity troponin to       
predict acute coronary syndrome (ACS).      
Graph is authors’ own work. Note: Data is fictionalized for purposes of example and may 
not reflect real-world relationships. 

In this violin plot (Figure 3 ), the negative class (no ACS) 
has a median predicted probability around 0.27 (red), while 
the positive class (ACS present) is closer to 0.8 (blue). Be
cause these two distributions are well separated, we can 
conclude that the model effectively distinguishes between 
the two classes, indicating a good fit.41 In general, violin 
plots give researchers a quick check on model performance 
before diving into more detailed and complicated analysis. 
By incorporating individual raw data points, violin plots al
low researchers to observe individual observations along
side the overall distribution, providing insights into data 
variability and potential outliers. 

SAMPLE CODE (PYTHON) 

Figure 4  is a sample Python script that demonstrates how 
to fit a logistic regression model for ACS based on troponin, 
using a training and test data split, and plots the corre
sponding violin plot. There are numerous statistical soft
wares (e.g., JMP,42 SAS,43 Stata,44 R45) and python pack
ages (e.g. scikit-learn46) that can achieve the same result, 
apart from the ones we have chosen here. 

CONCLUSION 

Logistic regression remains a cornerstone in clinical re
search for modeling binary outcomes such as disease pres
ence or absence. Its interpretability via odds ratios and rel
ative simplicity make it highly attractive for physicians and 
researchers seeking clear answers to diagnostic and prog
nostic questions. By understanding and addressing core as
sumptions (e.g., linearity in the log-odds, adequate sample 
size, and independence of observations), investigators can 
maximize both the accuracy and generalizability of their 
findings. Properly splitting data into training, validation, 
and testing sets helps guard against overfitting, while met
rics such as sensitivity, precision, and the F1 score—along
side visualization tools like violin plots—allow for nuanced 
evaluation of model performance. When appropriately ap
plied, validated, and interpreted, logistic regression pro

vides a robust, clinically meaningful approach to predicting 
outcomes and informing evidence-based decisions. 

Submitted: March 04, 2025 EDT. Accepted: March 06, 2025 
EDT. Published: March 06, 2025 EDT. 
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Figure 4. Example python script constructing a logistic regression model of ACS and troponin which prints a                
table of output and displays the scatterplot.        Note that the dataset is a fictional example and does not reflect the real-             
world association between ACS and troponin. Script is author’s own work.            

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License 
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